Abstract

The role of intra- and extravesicular ascorbate has been investigated in dopamine beta-monooxygenase (D beta M) turnover using adrenal medulla chromaffin granule ghosts. Resealing of vesicle ghosts with high levels of intravesicular ascorbate leads to viable vesicles, as evidenced from the high rates of the ATP-dependent accumulation of tyramine, Vmax = 14 +/- 1 nmol/min.mg and Km = 20 +/- 6 microM. However, the D beta M-catalyzed conversion of tyramine to octopamine occurs slowly, Vmax = 0.50 +/- 0.13 nmol/min.mg and Km = 29 +/- 18 mM. When ascorbate is present instead in the external buffer, the D beta M rate increases 3.6-fold for a final Vmax = 1.8 +/- 0.2 and Km = 1.2 +/- 0.3 mM. This relatively high rate of enzyme turnover is retained in ghosts resealed with a large excess of ascorbate oxidase, ruling out contamination by intravesicular ascorbate as the source of enzyme activity. The synergistic effect of intravesicular ascorbate was examined under conditions of 2 mM external ascorbate, showing that the enzymatic rate increases 2.7-fold, from 1.2 (0 internal ascorbate) to 3.2 +/- 0.4 nmol/min.mg (saturating internal ascorbate). This result confirms that high levels of internal ascorbate are not damaging to intravesicular D beta M. These studies demonstrate very clearly that external ascorbate is the preferred reductant for the membranous form of D beta M in chromaffin granule ghosts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.