Abstract

Duchenne muscular dystrophy (DMD) is a degenerative disease of skeletal, respiratory, and cardiac muscles caused by defects in the dystrophin gene. More recently, brain involvement has been verified. Mitochondrial dysfunction and oxidative stress may underlie the pathophysiology of DMD. In this study we evaluate Krebs cycle enzymes activity in the cerebral cortex, diaphragm, and quadriceps muscles of mdx mice. Cortex, diaphragm, and quadriceps tissues from male dystrophic mdx and control mice were used. We observed increased malate dehydrogenase activity in the cortex; increased malate dehydrogenase and succinate dehydrogenase activities in the diaphragm; and increased citrate synthase, isocitrate dehydrogenase, and malate dehydrogenase activities in the quadriceps of mdx mice. This study showed increased activity of Krebs cycle enzymes in cortex, quadriceps, and diaphragm in mdx mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.