Abstract

The ineffectiveness of anti-tuberculous therapy against dormant and drug-resistant mycobacteria demands scrutiny of alternative candidates like antimicrobial peptides having different mechanisms of action. The present study was designed to explore the activity of human beta defensin-1 (HBD-1) and its in silico identified short motif Pep-B against active and dormant Mycobacterium tuberculosis (M. tb) H37Rv. Activity of HBD-1 and Pep-B was determined against actively growing M. tb in vitro, inside monocyte-derived macrophages (MDMs) and dormant bacilli in in vitro potassium deficiency and human peripheral blood mononuclear cell (PBMC) granuloma models using colony-forming unit enumeration. The minimum inhibitory concentrations (MIC) of HBD-1 and Pep-B were found to be 2 and 20μg/ml, respectively. These peptides also inhibited intracellular mycobacterial growth at concentrations lower than in vitro MICs along with increased IFN-γ levels. Although at higher concentration, HBD-1 (×2 MIC) and Pep-B (×2 MIC) led to decrease in in vitro dormant mycobacterial load as compared to rifampicin (×25 MIC) and isoniazid (×16 MIC). Similarly, both peptides showed higher killing efficacy against dormant mycobacteria inside granuloma as compared to rifampicin. Thus, the present study indicates that HBD-1 and its motif are effective antimicrobial players against both actively growing and dormant mycobacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call