Abstract

To analyze neurophysiologically the functions of the primate hippocampus, the activity of 905 single hippocampal formation neurons was analyzed in two rhesus monkeys performing a conditional spatial response task known to be impaired in monkeys and in man by damage to the hippocampus or fornix. In the task, the monkey learned to make one spatial response, touching a screen three times when he saw one visual stimulus on the video monitor, and a different spatial response, of withdrawing his hand from the screen, when a different visual stimulus was shown. Fourteen percent of the neurons fired differentially to one or the other of the stimulus-spatial response associations. The mean latency of these differential responses was 154 +/- 44 (SD) ms. The firing of these neurons was shown to reflect a combination of the particular stimulus and the particular response associated by learning in the stimulus-response association task and could not be accounted for by the motor requirements of the task, nor wholly the stimulus aspects of the task, as demonstrated by testing their firing in related visual discrimination tasks. Responsive neurons were found throughout the hippocampal formation, but were particularly concentrated in the subicular complex and the CA3 subfield. These results show that single hippocampal neurons respond to combinations of the visual stimuli and the spatial responses with which they must become associated in conditional spatial response tasks and are consistent with the suggestion that part of the mechanism of this learning involves associations between visual stimuli and spatial responses learned by single hippocampal neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.