Abstract
The aim of this study was to assess whether the novel lipopeptide daptomycin might be capable of disrupting or inhibiting the synthesis of biofilms produced by staphylococci. Fourteen recently isolated slime-producing methicillin-susceptible (MET-S) and methicillin-resistant (MET-R) strains (three MET-S Staphylococcus aureus, three MET-R S. aureus, three MET-S Staphylococcus epidermidis, three MET-R S. epidermidis and two vancomycin-intermediate S. aureus (VISA)) were tested. Slime formation on polystyrene plates was quantified spectrophotometrically. Daptomycin (2–64 mg/L) inhibited slime synthesis by ≥80% in MET-S strains, by 60–80% in MET-R S. aureus and by 70–95% in MET-R S. epidermidis. At 64 mg/L, biofilm synthesis decreased by 80% in the VISA isolates. Daptomycin also disrupted pre-formed biofilm: >50% breakdown of initial biofilm (5 h) was observed in all strains. Disruption of mature biofilms (48 h), in terms of percentage, was more variable depending on the strain, ranging from ca. 20% in a MET-R S. epidermidis strain to almost 70% in two MET-S strains (one S. aureus and one S. epidermidis). Daptomycin at concentrations achievable during therapy promoted a statistically significant inhibition of slime synthesis (preventing biofilm building) and induced slime disruption (disaggregating its structure) both in initial and mature biofilms on a plastic support in all staphylococcal strains studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.