Abstract

Phytotherapy has been described as an alternative method for the control of gastrointestinal nematodes in small ruminants. Goal of the encapsulation of essential oils in biopolymer matrices is to optimize the biological effects of these oils. The aim of the present study was to evaluate the in vitro and in vivo anthelmintic activity of encapsulated Eucalyptus staigeriana essential oil (EncEs) on the eggs and larvae of Haemonchus contortus. Therefore, the egg hatching test (EHT), larval development test (LDT) and worm load evaluation were performed to evaluate Meriones unguiculatus experimentally infected with H. contortus. The chemical constituents of E. staigeriana essential oil (EsEO) and the in vitro oil release profile from the chitosan matrix at a pH of 1.2 and 7.0 were also characterized. EncEs and EsEO inhibited larval hatching by 97.19% and 99.96% at doses of 1.5 and 1.0mgml−1, respectively. In the LDT, EncEs and EsEO induced a larvicidal effect greater than 95% at concentrations of 5.8 and 8mgml−1, respectively. EncEs and EsEO decreased H. contortus load in M. unguiculatus by 40.51% and 46.44%, respectively. The major chemical constituents of EsEO were (+)-Limonene (72.9%), 1,8-Cineole (9.5%) and o-Cimene (4.6%). The release profile of EsEO was 30% in acid and 25% at neutral pH. The similar efficacy of EncEs and EsEO demonstrates that there was no optimization of anthelmintic action following the encapsulation process. Therefore, the use of new encapsulation matrices with controlled release in the pH of the abomasum should be investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call