Abstract

The activity of Purkinje cells (PCs) was recorded in the anterior lobe (the vermis and pars intermedia) and in the paramedian lobule of the cerebellum during the fictitious scratch reflex in thalamic cats immobilized with Flaxedil. In the anterior lobe, the activity of many PCs was rhythmically modulated in relation to the scratch cycle: they generated bursts of impulses separated by periods of silence. Different PCs were active in different phases of the scratch cycle. In many cases the discharge modulation was irregular: the burst duration and the discharge rate in the burst varied considerably in subsequent cycles. The rhythmical activity of PCs was determined by modulation of the frequency of ‘simple spikes’ reflecting the mossy fiber input. Generation of ‘complex spikes’ reflecting the climbing fiber input in most PCs was not related with the scratch rhythm. In the paramedian lobule, rhythmical modulation of PCs was practically absent. Rhythmical modulation of PCs in immobilized cats is determined by signals coming from the central spinal mechanism of scratching via the ventral spinocerebellar tract (VSCT) and the spinoreticulocerebellar pathway (SRCP) 6.7. Results of separate transections of these pathways demonstrated that the VSCT plays the crucial role in modulating the PCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.