Abstract

Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25–400 µg/mL. Based on the lower activity of CT (25–400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h.

Highlights

  • Food safety is a top priority for the food-processing industry given that foodborne infections are a great burden to public health and cause huge economic losses [1]

  • The one-step growth curve indicated that phage SA21RB had a latent period of 40 min and a virulence assay, both strains (O154:H10 and O113:H21) were susceptible to SA21RB (Table 1)

  • This study evaluated the effectiveness of phage SA21RB and phlorotannins against biofilms formed on stainless-steel by Shiga toxin-producing Escherichia coli (STEC) strains O154:H10 and O113:H21 STEC from South Africa and Canada, respectively

Read more

Summary

Introduction

Food safety is a top priority for the food-processing industry given that foodborne infections are a great burden to public health and cause huge economic losses [1]. Food products contaminated with Shiga toxin-producing Escherichia coli (STEC) have caused serious outbreaks in humans for decades [2,3,4]. STEC serotype O113:H21, which has been associated with human illness [5,6] and O154:H10, which has the ability to colonize and form biofilms on food contact surfaces under different environmental conditions, poses a health risk [7,8]. The persistence of STEC biofilms on food contact surfaces is a contributing factor to the contamination of food products [9,10]. The ability to chelate cationic antimicrobials as a result of the presence of extracellular DNA within the biofilm matrix [13] and to concentrate enzymes such as beta-lactamases, increases the resistance of biofilms to antimicrobials [14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call