Abstract

1. A P2Y (nucleotide) receptor activity in a clonal population (B10) of rat brain capillary endothelial cells is coupled to inhibition of adenylyl cyclase and has functional similarities to the P2Y(T) (previously designated 'P2T') receptor for ADP of blood platelets. However, the only P2Y receptor which was detectable in a previous study of B10 cells by mRNA analysis was the P2Y(1) receptor, which elsewhere shows no transduction via cyclic nucleotides. We have sought here to clarify these issues. 2. The inhibition of forskolin-stimulated adenylyl cyclase induced by purified nucleotides was measured on B10 cells. The EC(50) value for 2-methylthioADP (2-MeSADP) was 2.2 nM and, surprisingly, 2-MeSATP was an almost equally strong agonist (EC(50)=3.5 nM). ATP and 2-ClATP were weak partial agonists (EC(50)=26 microM and 10 microM respectively) and under appropriate conditions could antagonise the activity on 2-MeSADP. 3. A known selective antagonist of the platelet P2Y(T) receptor, 2-propylthioadenosine-5'-(beta,gamma)-difluoromethylene) triphosphonate (AR-C 66096), was a competitive antagonist of this B10 cell receptor, with pK(B)=7.6. That ligand is inactive at the P2Y(1) receptor in the same cells. Conversely, the competitive P2Y(1) receptor antagonists, the 3', 5'- and 2', 5'-adenosine bis-monophosphates, are, instead, weak agonists at the adenylyl cyclase-inhibitory receptor. 4. The inhibition of adenylyl cyclase by 2-MeSADP was completely abolished by pertussis toxin. 5. In summary, these brain endothelial cells possess a P2Y(T)-type receptor in addition to the P2Y(1) receptor. The two have similarities in agonist profiles but are clearly distinguishable by antagonists and by their second messenger activations. The possible relationships between the B10 and platelet P2Y(T) receptors are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.