Abstract

Ramonda nathaliae and Ramonda serbica are resurrection plants belonging to homoiochlorophyllous desiccation-tolerant angiosperms. Chlorophyll biosynthesis is one of the most important metabolic pathways to tolerate desiccation in these plant species. To better understand the early pathway steps of chlorophyll biosynthesis, we have analyzed the enzyme δ-aminolevulinic acid dehydratase (ALA-D) and contents of δ-aminolevulinic acid (ALA) and total chlorophyll as a final product during dehydration and rehydration stages for these plant species. Our results showed that the activity of ALA-D in R. nathaliae and R. serbica plants rapidly decreased during dehydration and in the final stage of desiccation the activity of this enzyme was decreased by 79% and 86%, respectively. After rehydration of plants, the ALA-D activity was fully restored. In contrast, the ALA content of both plant species significantly increased during desiccation and decreased after 48 hr of rewatering. In each stage of dehydration or rehydration, a significant negative correlation was established between ALA-D activity and ALA content in both plant species. Total chlorophyll content was preserved more in R. nathaliae than in R. serbica during desiccation. Moreover, ALA-D activity was decreased to a minimal level but preserved its function during desiccation, and this suggests one possible mechanism of desiccation tolerance to retain the chlorophyll of these plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.