Abstract
Abstract Compared to conventional solvents used in the chemical industry, deep eutectic solvents (DESs) are considered as promising potentially sustainable solvents. DESs are binary mixtures and the resulting liquid mixture is characterized by a large melting point depression with respect to the melting temperatures of its constituents. The relative melting point depression becomes larger as the two components have stronger attractive interactions, resulting in non-ideal behavior. The compositional range over which such binary mixtures are liquids is set by the location of the solid–liquid phase boundary. Here we present experimental phase diagrams of various recent and new DESs that vary in the degree of non-ideality. We investigate whether thermodynamic models are able to describe the solid–liquid equilibria and focus on relating the parameters of these models to the non-ideal behavior, including asymmetric behavior of the activity coefficients. It is shown that the orthogonal Redlich–Kister-like polynomial (OP) expansion, including an additional first order term, provides an accurate description. This theory can be considered as an extension of regular solution theory and enables physical interpretation of the fit parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.