Abstract

Active polymers possess numerous unique properties that are quite different from those observed in the system of small active molecules due to the intricate interplay between their activity and topological constraints. This study focuses on the conformational changes induced by activity, impacting effective stiffness and crucially influencing entanglement and dynamics. When the two terminals of a linear chain undergo active modification through coupling to a high-temperature thermal bath, there is a substantial increase in chain size, indicating a notable enhancement in effective stiffness. Unlike in passive semiflexible chains where stiffness predominantly affects local bond angles, activity-induced stiffness manifests at the scale of tens of monomers. While activity raises the ambient temperature, it significantly decreases diffusion by over an order of magnitude. The slowdown of the dynamics observed can be attributed to increased entanglement due to chain elongation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.