Abstract

We investigate the phase behavior and kinetics of a monodisperse mixture of active (i.e., self-propelled) and passive isometric Brownian particles through Brownian dynamics simulations and theory. As in a purely active system, motility of the active component triggers phase separation into a dense and a dilute phase; in the dense phase, we further find active-passive segregation, with "rafts" of passive particles in a "sea" of active particles. We find that phase separation from an initially disordered mixture can occur with as little as 15% of the particles being active. Finally, we show that a system prepared in a suitable fully segregated initial state reproducibly self-assembles an active "corona," which triggers crystallization of the passive core by initiating a compression wave. Our findings are relevant to the experimental pursuit of directed self-assembly using active particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.