Abstract

Titanium silicalite (TS-1) was hydrothermally crystallised from a titanosilicate gel. The solid material was characterised by XRD, IR, and SEM, and then used as a catalyst in the liquid phase oxidation of cyclohexane with hydrogen peroxide. The reaction was carried out for 6 h, at the temperature between 40 and 80 °C. It was found that a marked increase in the catalytic activity was observed in the reaction using acetic acid as the solvent, as compared to those using no solvent and methyl ethyl ketone. Further investigation was made on the cause of activity enhancement, and it was shown that acetic acid was readily oxidised to peracetic acid. This compound was believed to facilitate the complexation of the framework titanium active sites, and subsequently serve as a better oxidising agent, as compared to the original hydrogen peroxide. However, leaching of the titanium species was also observed in small amounts, from the reaction using acetic acid as the solvent. In the mechanistic point of view, there was an evidence suggesting that cyclohexanol might be a primary product from the cyclohexane oxidation, and can be consecutively re-oxidised to form cyclohexanone. It is noted that the direct oxidation from cyclohexane to cyclohexanone cannot be excluded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.