Abstract

GABA(A) receptors (GABA(A)Rs) are the major mediators of fast synaptic inhibition in the brain. In neurons, these receptors undergo significant rates of endocytosis and exocytosis, processes that regulate both their accumulation at synaptic sites and the efficacy of synaptic inhibition. Here we have evaluated the role that neuronal activity plays in regulating the residence time of GABA(A)Rs on the plasma membrane and their targeting to synapses. Chronic blockade of neuronal activity dramatically increases the level of the GABA(A)R ubiquitination, decreasing their cell surface stability via a mechanism dependent on the activity of the proteasome. Coincident with this loss of cell surface expression levels, TTX treatment reduced both the amplitude and frequency of miniature inhibitory synaptic currents. Conversely, increasing the level of neuronal activity decreases GABA(A)R ubiquitination enhancing their stability on the plasma membrane. Activity-dependent ubiquitination primarily acts to reduce GABA(A)R stability within the endoplasmic reticulum and, thereby, their insertion into the plasma membrane and subsequent accumulation at synaptic sites. Thus, activity-dependent ubiquitination of GABA(A)Rs and their subsequent proteasomal degradation may represent a potent mechanism to regulate the efficacy of synaptic inhibition and may also contribute to homeostatic synaptic plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.