Abstract

Metalloproteases, notably members of the matrix metalloprotease (MMP) and A Disintegrin And Metalloprotease (ADAM) families play crucial roles in tissue remodeling, the liberation of growth factors and cytokines from cell membranes (shedding) and cell-cell or cell-matrix interactions. Activity of MMPs or ADAMs must therefore be tightly controlled in time and space by activation of pro-enzymes upon appropriate stimuli and inhibition by endogenous tissue inhibitors of metalloproteases (TIMPs) or α2-macroglobulin to prevent irreversible tissue damage due to excessive degradation or uncontrolled release of potent inflammatory mediators, such as tumor necrosis factor-α (TNF-α).Although there is a wide range of methods to measure the amount of metalloproteases based on immunological approaches, relatively little is known about the activation status of a given enzyme at any given time and location. This information is, however, critical in order to understand the function and possible implication of these enzymes in disease. Since metalloproteases use an active-site bound water molecule to cleave the peptide bond, it is not possible to apply known active-site-directed labeling approaches with electrophilic "warheads." We therefore developed novel metalloprotease inhibitors that contain a photoactivatable trifluoromethylphenyldiazirine group and show that such inhibitors are suitable for activity-dependent photoaffinity labeling of MMPs and ADAMs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call