Abstract
At the nerve terminal, neurotransmitter release is triggered by Ca(2+) influx through voltage-gated Ca(2+) channels (VGCCs). During postnatal development, VGCC subtypes in the nerve terminal switch at many synapses. In immature rodent cerebella, N-type and P/Q-type VGCCs mediate GABAergic neurotransmission from Purkinje cells (PCs) to deep nuclear cells, but as animals mature, neurotransmission becomes entirely P/Q-type dependent. We reproduced this developmental switch in rat cerebellar slice culture to address the underlying mechanism. Chronic block of cerebellar neuronal activity with tetrodotoxin (TTX) in slice culture, or in vivo, reversed the switch, leaving neurotransmission predominantly N-type channel-dependent. Brain-derived neurotrophic factor or neurotrophin-4 rescued this TTX effect, whereas pharmacological blockade of neurotrophin receptors mimicked the TTX effect. In PC somata, unlike in presynaptic terminals, TTX had no effect on the proportion of Ca(2+) channel subtype currents. We conclude that neuronal activity activates the neurotrophin-TrkB signaling pathway, thereby causing the N-to-P/Q channel switch in presynaptic terminals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.