Abstract

Possible prevention of the effects of prenatal alcohol exposure has been investigated using peptides that were previously shown to be involved in neuroprotection both in vitro and in vivo. I focused in this study on investigating the neuroprotective effects of one of these peptides with regard to the determination of the downstream signaling pathways involved in neuroprotection. This peptide with the sequence NAPVSIPQ, known as NAP, a fragment of activity-dependent neuroprotective protein, demonstrated a potent protective effect against oxidative stress associated with alcohol exposure. On embryonic day 7 (E7), weight-matched C57BL/6 pregnant females were assigned the following groups: (1) Ethanol liquid diet group (ALC) 25% (4.49%, v/v) ethano-derived calories, (2) Pair-fed (PF) control group (3) Chow control group, (4) treatment groups with alcohol alongside i.p. injections of d-NAP (ALC/d-NAP, 20 or 30 μg/20 g body weight), (5) PF/d-NAP control group. On E13, fetal brains were collected and assayed for TdT-mediated dUTP nick end labeling (TUNEL) staining, caspase-3 colorimetric assay and ELISA for cytochrome c detection. My results show that NAP significantly prevented alcohol-induced weight reduction of the fetal brain. Apoptosis was determined by TUNEL staining; NAP administration significantly prevented alcohol-induced increases in TUNEL-positive cells in primordium cingulate cortex and basal ganglia eminence. The investigation of downstream signaling pathways involving NAP neuroprotection revealed that this peptide significantly prevented alcohol-induced increase in the concentrations of caspase-3 in E13 fetal brains. Moreover, ELISA for cytochrome c shows that NAP significantly prevented both alcohol-induced increases in the level of cytosolic cytochrome c and alcohol-induced decreases in the level of mitochondrial cytochrome c. These data provide an understanding of NAP intracellular target, and the downstream mechanisms of action that will pave a path toward potential therapeutics against alcohol intoxication during prenatal stages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.