Abstract

Activity plays critical roles in development and maintenance of the olfactory system, which undergoes considerable neurogenesis throughout life. In the mouse olfactory epithelium, each olfactory sensory neuron (OSN) stably expresses a single odorant receptor (OR) type out of a repertoire of ∼1200 and the OSNs with the same OR identity are distributed within one of the few broadly-defined zones. However, it remains elusive whether and how activity modulates such OR expression patterns. Here we addressed this question by investigating OR gene expression via in situ hybridization when sensory experience or neuronal excitability is manipulated. We first examined the expression patterns of fifteen OR genes in mice which underwent neonatal, unilateral naris closure. After four-week occlusion, the cell density in the closed (sensory-deprived) side was significantly lower (for four ORs), similar (for three ORs), or significantly higher (for eight ORs) as compared to that in the open (over-stimulated) side, suggesting that sensory inputs have differential effects on OSNs expressing different OR genes. We next examined the expression patterns of seven OR genes in transgenic mice in which mature OSNs had reduced neuronal excitability. Neuronal silencing led to a significant reduction in the cell density for most OR genes tested and thinner olfactory epithelium with an increased density of apoptotic cells. These results suggest that sensory experience plays important roles in shaping OR gene expression patterns and the neuronal activity is critical for survival of OSNs.

Highlights

  • The mammalian olfactory system utilizes a large family of odorant receptors (ORs) for detecting numerous odors in the environment

  • olfactory marker protein (OMP)-Kir2.1 mice had thinner olfactory epithelium with an increased density of apoptotic cells, supporting the notion that neuronal activity is critical for survival of olfactory sensory neuron (OSN)

  • By manipulating the sensory inputs and neuronal excitability, we investigated activity-dependent modulation of OR gene expression in the mouse olfactory epithelium using in situ hybridization

Read more

Summary

Introduction

The mammalian olfactory system utilizes a large family of odorant receptors (ORs) for detecting numerous odors in the environment. OSNs can undergo caspase-mediated apoptosis (programmed cell death) at all stages in their life cycle and be replenished by newly generated OSNs from dividing basal cells to maintain the epithelial homeostasis [10,11,12]. This makes the olfactory system especially subject to activity-dependent modulation. Unilateral naris closure has been widely used to manipulate sensory inputs into the two nostrils of a rodent: the closed side is deprived of most airflow and odor stimulation, whereas the open side experiences greater than normal stimulation. It remains elusive to what extent sensory experience and neuronal activity modulate the expression patterns of OR genes in the olfactory epithelium

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call