Abstract

Optokinetic stimulation activates visual climbing fiber pathways that synapse upon contralateral floccular Purkinje cells. Long-term horizontal optokinetic stimulation causes a progressive decrease in gain of the optokinetic reflex and leads to the subsequent genesis of a prolonged negative optokinetic afternystagmus. Since the flocculus is involved in adaptation to optokinetic stimulation, we used the technique of differential display reverse transcription-polymerase chain reaction to explore transcriptional changes in the flocculus evoked by long-term optokinetically evoked climbing fiber discharge. Several differentially transcribed gene products were isolated and sequenced. One of these, calbindin mRNA, was expressed in relatively decreased abundance in the flocculus that received increased climbing fiber input. Decreased transcription of calbindin mRNA was confirmed by northern blots. Hybridization histochemistry was used to localize calbindin mRNA to Purkinje cells and confirmed decreased transcription of calbindin mRNA in Purkinje cells located in folium 1 of the flocculus. Western blots and immunohistochemistry localized the climbing fiber-evoked decreased expression of calbindin to Purkinje cells in folia 1 of the flocculus. The expression of four other calcium-binding proteins in the flocculus was not influenced by optokinetic stimulation. Changes in expression of calbindin could be evoked by decreases in intracellular calcium associated with climbing fiber-evoked decreases in Purkinje cell simple spike activity. The application of differential display reverse transcription-polymerase chain reaction has provided a positive screen for several molecules in addition to calbindin whose expression is affected by naturally evoked activity in a major synaptic pathway to the cerebellum. Further experiments will be required to specify the functional role of each of these molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.