Abstract

Learning and memory arise through activity-dependent modifications of neural circuits. Although the activity dependence of synaptic efficacy has been studied extensively, less is known about how activity shapes the intrinsic electrical properties of neurons. Lobster stomatogastric ganglion neurons fire in bursts when receiving synaptic and modulatory input but fire tonically when pharmacologically isolated. Long-term isolation in culture changed their intrinsic activity from tonic firing to burst firing. Rhythmic stimulation reversed this transition through a mechanism that was mediated by a rise in intracellular calcium concentration. These data suggest that neurons regulate their conductances to maintain stable activity patterns and that the intrinsic properties of a neuron depend on its recent history of activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.