Abstract

Our work deals with the self-organization [1] of a memory structure that includes multiple hierarchical levels with massive recurrent communication within and between them. Such structure has to provide a representational basis for the relevant objects to be stored and recalled in a rapid and efficient way. Assuming that the object patterns consist of many spatially distributed local features, a problem of parts-based learning is posed. We speculate on the neural mechanisms governing the process of the structure formation and demonstrate their functionality on the task of human face recognition.

Highlights

  • Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf

  • The structure formation relies on the activity-dependent bidirectional plasticity [2] and the homeostatic regulation of unit's activity

  • BMC Neuroscience 2009, 10(Suppl 1):P207 character ensures that only a small subset of units may update their synapses during a decision cycle spanned by oscillatory inhibition and excitation in the gamma range

Read more

Summary

Introduction

Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Don H Johnson Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here. http://www.biomedcentral.com/content/pdf/1471-2202-10-S1-info.pdf . Email: Jenia Jitsev* - jitsev@fias.uni-frankfurt.de * Corresponding author from Eighteenth Annual Computational Neuroscience Meeting: CNS*2009 Berlin, Germany. Published: 13 July 2009 BMC Neuroscience 2009, 10(Suppl 1):P207 doi:10.1186/1471-2202-10-S1-P207

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.