Abstract

The first-order sensory relay for olfactory processing, the main olfactory bulb (MOB), retains the ability to acquire new interneurons throughout life. It is therefore a particularly appropriate region for studying the role of experience in sculpting neuronal networks. We found that nostril closure decreased the number of newborn granule cells in the MOB, the complexity of their dendritic arborization, and their spine density, without affecting the preexisting population of granule cells. Accordingly, the frequency of miniature synaptic inhibitory events received by mitral cells was reduced. However, due to a compensatory increase in newborn granule cell excitability, action potential-dependent GABA release was dramatically enhanced, thus counteracting the reduction in spine density and leading to an unaltered synchronization of mitral cell firing activity. Together, this study reveals a unique form of adaptive response brought about exclusively by the cohort of newborn cells and used to maintain normal functioning of the MOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.