Abstract

AbstractA set of thermodynamic models is presented that, for the first time, allows partial melting equilibria to be calculated for metabasic rocks. The models consist of new activity–composition relations combined with end‐member thermodynamic properties from the Holland & Powell dataset, version 6. They allow for forward modelling in the system NaO–CaO–KO–FeO–MgO–AlO–SiO–HO–TiO–FeO. In particular, new activity–composition relations are presented for silicate melt of broadly trondhjemitic–tonalitic composition, and for augitic clinopyroxene with Si–Al mixing on the tetrahedral sites, while existing activity–composition relations for hornblende are extended to include KO and TiO. Calibration of the activity–composition relations was carried out with the aim of reproducing major experimental phase‐in/phase‐out boundaries that define the amphibolite–granulite transition, across a range of bulk compositions, at ≤13 kbar.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.