Abstract

With the advent of big data era, activity-based model (ABM) has once again become hot topics in the traffic planning. Traffic big data can reflect individual travel patterns, making it possible to establish ABMs. However, current ABMs based on big data are not mature, especially in the individual trip forecasting. Therefore, this paper proposes an advanced ABM using Long Short-Term Memory (LSTM) networks and mobile phone signalling data. The model is skeleton scheduling which contains primary activity chaining and secondary activity nesting. Then a time-dynamic adjustment model is proposed to adjust time conflicts among consecutive activities. A field test is conducted in Chengdu. The KS values of work and leisure departure time reach 35.20 × 10−2 and 41.02 × 10−2 separately, and that for activity duration reach 44.91 × 10−2 and 54.65 × 10−2. The results show our model can effectively predict activities, and has better accuracy and stability than existing BN, DT, GRNN, RF and GRU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.