Abstract

Oxidative stress plays a crucial role in mediating cyanide toxicity. The present study addresses the effect of cyanide on activity and gene-expression profile of certain antioxidant enzymes and the expression of heat shock protein (HSP-70) in different organs of rats. Rats were treated with 0.50 LD50 (7.0 mg/kg) of potassium cyanide (KCN; oral) and/or alpha-ketoglutarate (A-KG; 1.0 g/kg; oral) daily for 14 days, and various biochemical variables were measured in brain, liver, and kidney after 7 and 14 days of treatments and a 7-day recovery period. Cyanide significantly reduced the activity of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase (CA) in all the organs after 7 days, while the activity of GPx in brain, liver, and kidney, GR in liver, and CA in brain remained diminished up to 14 days. The gene-expression profile of corresponding enzymes did not show any difference between the control and treatment groups. Elevated levels of malondialdehyde were observed in brain and kidney 7 and 14 days after cyanide. Cyanide also increased the expression of HSP-70 activity in brain after 7 days alone. Regression of toxicity was observed after the withdrawal of KCN. Treatment of A-KG was found to prevent all the biochemical alterations caused by cyanide. This study reveals that oxidative stress caused by cyanide was independent of the expression of antioxidant enzyme activity at the gene level, and all changes responded favorably to A-KG, indicating its therapeutic potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call