Abstract

It is now widely accepted that visual cortical areas are active during normal tactile perception, but the underlying mechanisms are still not clear. The goal of the present study was to use functional magnetic resonance imaging (fMRI) to investigate the activity and effective connectivity of parietal and occipital cortical areas during haptic shape perception, with a view to potentially clarifying the role of top-down and bottom-up inputs into visual areas. Subjects underwent fMRI scanning while engaging in discrimination of haptic shape or texture, and in separate runs, visual shape or texture. Accuracy did not differ significantly between tasks. Haptic shape-selective regions, identified on a contrast between the haptic shape and texture conditions in individual subjects, were found bilaterally in the postcentral sulcus (PCS), multiple parts of the intraparietal sulcus (IPS) and the lateral occipital complex (LOC). The IPS and LOC foci tended to be shape-selective in the visual modality as well. Structural equation modelling was used to study the effective connectivity among the haptic shape-selective regions in the left hemisphere, contralateral to the stimulated hand. All possible models were tested for their fit to the correlations among the observed time-courses of activity. Two equivalent models emerged as the winners. These models, which were quite similar, were characterized by both bottom-up paths from the PCS to parts of the IPS, and top-down paths from the LOC and parts of the IPS to the PCS. We conclude that interactions between unisensory and multisensory cortical areas involve bidirectional information flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.