Abstract

Simple SummaryMycotoxicosis in poultry has been seriously damaging the poultry production in Pakistan, resulting in economic losses to the country. The present study may act as a preliminary step for exploring the effect of indigenously characterized potential probiotic lactobacilli on aflatoxin production by Aspergillus flavus. The present study explored anti-fungal Lactobacillus strains. Further investigations revealed their in vitro aflatoxin binding and anti-aflatoxigenic capabilities. These findings demonstrated L. gallinarum PL 149 to be an effective binder of aflatoxin B1 which may be used as a biocontrol agent against A. flavus and aflatoxin B1 production. It may be further employed for aflatoxin binding in poultry gut after in vivo evaluations.Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28–65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.

Highlights

  • Poultry is one of the major sectors playing a role in the enhanced economic activity of Pakistan but still it faces a lot of problems, including mycotoxicosis

  • Fungal strain was cultured on Sabouraud Dextrose Agar (SDA) medium incubated at 37 ◦ C for 5–6 days

  • This study identified three probiotic lactobacilli isolates (Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) as antifungal agents

Read more

Summary

Introduction

Poultry is one of the major sectors playing a role in the enhanced economic activity of Pakistan but still it faces a lot of problems, including mycotoxicosis. Fumonisins, patulin, aflatoxin, citrinin, trichothecenes, ochratoxin A, and zearalenone are all examples of some different mycotoxins. Aflatoxins, produced by Aspergillus parasiticus, Aspergillus flavus, and Aspergillus nomius, are of great importance because of their biological and biochemical effects on living systems [1]. Aflatoxin-producing molds are globally and can flourish on a variety of food and feed commodities during production, processing, storage, and transportation procedures [1,2,3]. These molds can infect crops, especially in hot and humid conditions, resulting in economic loss and adverse effects on consumers’ health

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call