Abstract

The effects of oxygen, nickel, and cobalt on the activity coefficients of As, Sb, Bi, and Pb in copper mattes were measured at 1200 °C (1473.15 K) using the transportation method. The transportation experiments concerning the effect of oxygen were carried out as a function of the SO2 content (1 to 100 vol pct) in the carrier gas and using high- and low-grade matte samples, ≈80 and ≈40 wt pct Cu, respectively. The prevailing sulfur and oxygen partial pressures were evaluated on the basis of matte and carrier gas compositions. The effect of the SO2 pressure on the activity coefficients was found to be very small compared with the effect of the sulfur pressure, whereas the effect of the SO2 partial pressure on the vaporization behavior, especially of As, was very significant, due to the additional vaporization of As as AsO gas molecules, which caused an increase in the As removal rate. At a higher oxygen partial pressure than 10−8.5 atm (3.2·10−4 Pa) a noticeable decrease in the Sb activity coefficients was observed due to the oxidation. This did not, however, decrease the Sb removal rate, since the relative proportion of the oxide gas molecules in the gas phase increased simultaneously. The interactions between dissolved Ni or Co and the impurity elements were investigated by doping (1 wt pct) the high grade (Cu ≈75 wt pct) matte samples with Ni or Co. At stoichiometric and sulfur-deficient matte compositions, Ni and especially Co decreased the activity coefficients of As and Sb, but did not have any effect on the activity coefficients of Bi and Pb, compared with the corresponding sulfur content in the Ni- and Co-free mattes. For mattes of higher sulfur content Ni and Co did not show any marked effect on the activity coefficients of As, Sb, Bi, and Pb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.