Abstract
In this study, the genera, abundance, and activities of endophytic bacteria in field-grown white clover (Trifolium repens) and the fate of introduced antibiotic-tolerant bacteria in white clover tissues were investigated. Pseudomonas, Pantoea, and Corynebacterium were the most frequently isolated endophytic bacteria genera, whereas Xanthomonas, Microbacterium, and Cellulomonas occurred less frequently. The average bacterial populations in stolons and roots were approximately 100,000 colony-forming units (CFU) (g wet mass)-1. Of the 28 strains tested for activity, none were chitinolytic or able to inhibit the root pathogen Codinaea fertilis in vitro. However, Fusarium oxysporum and Cylindrocladium scoparium were inhibited by one and five strains, respectively. Four of seven strains tested depressed clover seedling growth. In pot experiments, colonization and recovery of spontaneous rifampicin-tolerant mutants (Rif+) of bacteria were studied in clover plants for periods up to 20 weeks. The strains used, sourced from white clover (endophytic and rhizoplane) and organic compost, had previously shown growth promotion potential of white clover seedlings by increasing plant mass and decreasing nematode numbers. In one experiment in this present study, five Rif+ strains were individually inoculated onto white clover seedlings, all five were re-isolated from shoots after 6 weeks and four strains were re-isolated after 20 weeks (numbers of Rif+ bacteria ranged from 51 to 200 CFU (g wet mass)-1). No Rif+ bacteria were isolated from root tissue at either time. In the second experiment, conducted with two strains of Rif+ bacteria, the population was highest in the shoots (range>500 CFU of Rif+ bacteria (g shoot fresh mass)-1) in weeks 2 and 3, declining to <200 CFU in week 5. Again, no Rif+ bacteria could be detected in roots. No Rif+ bacteria were recovered after 14 weeks for one of the strains. It appears that the main route of bacterial entry into seedlings was through stomata and that bacteria remained in the aerial parts of plants rather than migrating to the roots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.