Abstract

Activin and Wnt signaling are necessary and sufficient for mesendoderm (ME) differentiation of human embryonic stem cells (ESCs). In this study, we report that during ME differentiation induced by Activin and Wnt, Activin/Smad2 induces a decrease of the repressive histone modification of H3K27me3 by promoting the proteasome-dependent degradation of enhancer of zeste 2 polycomb (EZH2)-repressive complex 2 subunit. As a result, recruitment of the forkhead protein FOXH1 on open chromatin regions integrates the signals of Activin/Smad2 and Wnt/β-catenin to activate the expression of the ME genes including HAS2 and ALDH3A2 Consistently, H3K27me3 decrease is enriched on open chromatin around regulatory regions. Furthermore, knockdown of HAS2 or ALDH3A2 greatly attenuates ME differentiation. These findings unveil a pathway from extracellular signals to epigenetic modification-mediated gene activation during ME commitment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.