Abstract
Activin A (Act A) has been reported to promote oligodendrocyte progenitor cell (OPC) differentiation invitro and improve neurological outcomes in adult mice. However, the roles and mechanisms of action of Act A in preterm brain injury are unknown. In the present study, P5 rats were subjected to hypoxia‑ischemia to establish a neonatal white matter injury (WMI) model and Act A was injected via the lateral ventricle. Pathological characteristics, OPC differentiation, myelination, and neurological performance were analyzed. Further, the involvement of the Noggin/BMP4/Id2 signaling pathway in the roles of Act A in WMI was explored. Act A attenuated pathological damage, promoted OPC differentiation, enhanced myelin sheath and myelinated axon formation, and improved neurological performance of WMI rats. Moreover, Act A enhanced noggin expression, which, in turn, inhibited the expression of bone morphogenetic protein 4 (BMP4) and inhibitor of DNA binding 2 (Id2). Furthermore, upregulation of Id2 completely abolished the rescue effects of Act A in WMI rats. In conclusion, the present findings suggested that Act A rescues preterm brain injury via targeting a novel Noggin/BMP4/Id2 signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.