Abstract

Activin A, a protein homologous to transforming growth factor beta, was shown to induce hemoglobin synthesis in murine erythroleukemia (MEL) cells and was also termed erythroid differentiation factor (EDF) (Eto, Y., Tsuji, T., Takezawa, M., Takano, S., Yokogawa, Y., and Shibai, H. (1987) Biochem. Biophys. Res. Commun. 142, 1095-1103). We found that activin A/EDF also induced thromboxane (TX) A2 synthetic activity in these cells. Synthesis of TXA2 from arachidonic acid is catalyzed by cyclooxygenase and TX synthase. Activin A/EDF induced the latter TX synthase activity, whereas the cyclooxygenase activity was constitutively expressed. The induction of this enzyme activity was inhibited by cycloheximide, suggesting that activin A/EDF induced de novo protein synthesis of TX synthase. Furthermore, we studied the relationship between the induction of TXA2 synthetic activity and erythroid differentiation in MEL cells, since the former is not an erythroid phenotype. We found 1) that the two responses to activin A/EDF were distinctly affected by the initial cell density; 2) that the dose-response curves for activin A/EDF were similar (ED50 = approximately 100 pM), whereas the time course of induction of TXA2 synthetic activity was much faster; and 3) that other erythroid differentiation inducers of MEL cells, namely dimethyl sulfoxide and hexamethylene bisacetamide, had little or no effect on TXA2 synthesis. These results indicate that activin A/EDF induces TXA2 synthetic activity independently of erythroid differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.