Abstract

Recent studies by Wackett and co-workers have shown that cytochrome P450cam is capable of reductively dehalogenating hexachloroethane at a significant rate, but that no appreciable dehalogenation of 1,1,1-trichloroethane is observed. A growing body of evidence indicates that differences in intrinsic reactivity can not completely explain this observation. We therefore explored the possible role of differences in preferred binding orientation and in active-site mobility. A detailed analysis of molecular dynamics trajectories with each of these substrates bound at the active site of P450cam is presented. While the dynamics and overall time-average structure calculated for the protein are similar in the two trajectories, the two substrates behave quite differently. The smaller substrate, 1,1,1-trichloroethane, is significantly more mobile than hexachloroethane and has a preferred orientation in which the substituted carbon is generally far from the heme iron. In contrast, for hexachloroethane, one of the chlorine atoms is nearly always in van der Waals contact with the heme iron, which should favor the initial electron transfer step.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call