Abstract

Magnetorheological dampers, which are semi-active devices that use MR fluids to produce controllable forces, can be used as smart actuators to reduce the vibrations of mechanical systems. The advantage of these actuators is the low power input requirements and the high output force they produce. An analytical study is performed in this article to examine the effectiveness of this type of actuator in suppressing the vibrations of a passenger car suspension system. A half-car model including passenger dynamics subjected to road disturbance is used. Two MR dampers attached to the front and back axles are used as actuators. An optimal control scheme is used to control the overall suspension system such that the vibrations of the passenger seats as well as the chassis of the car are greatly reduced or eliminated. The simulation results show that properly controlled MR dampers are effective means for vibration suppression for passenger cars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.