Abstract
Active mode-locking of Raman fiber laser is experimentally investigated for the first time. An all fiber connected and polarization maintaining loop cavity of ~500 m long is pumped by a linearly polarized 1120 nm Yb fiber laser and modulated by an acousto-optic modulator. Stable 2 ns width pulse train at 1178 nm is obtained with modulator opening time of > 50 ns. At higher power, pulses become longer, and second order Raman Stokes could take place, which however can be suppressed by adjusting the open time and modulation frequency. Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser. Tuning of repetition rate from 392 kHz to 31.37 MHz is obtained with harmonic mode locking.
Highlights
Active mode-locking of Raman fiber laser is experimentally investigated for the first time
Pulses become longer, and second order Raman Stokes could take place, which can be suppressed by adjusting the open time and modulation frequency
Transient pulse evolution measurement confirms the absence of relaxation oscillation in Raman fiber laser
Summary
Active mode-locking of Raman fiber laser is experimentally investigated for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.