Abstract

This paper deals with the design of an efficient object model for propagation phenomena. It is applied to the phenomenological model developed at the University of Corsica, within the context of simulation of vegetation fires. The objective is to simulate large-scale fire propagation, and on the longer term to develop a decision aid tool to guide forest firemen and managers. Based on both cellular automata and discrete event specification (DEVS) formalisms, a new kind of model, called active-DEVS, is specified. Modeling methods based on enhanced cellular automata facilitate both spatial dynamic expression of propagation phenomena, and parallel architectures exploitation. However, such environments usually lack the ability to integrate easy component modifications. The DEVS formalism makes it possible to exploit the cellular models efficiently whatever their dimensions, and to reduce simulation times considerably. A simulation framework is developed to implement and compare active-DEVS model and classical discrete time system specification (DTSS) models. This framework relies on designs patterns, and thus keeps a modular, elegant and adaptable design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.