Abstract

An efficient analytical method for vibration analysis of a Euler–Bernoulli beam with Spring Loading at the Tip has been developed as a baseline for treating flexible beam attached to central-body space structure, followed by the development of MATLAB© finite element method computational routine. Extension of this work is carried out for the generic problem of Active Vibration Suppression of a cantilevered Euler–Bernoulli beam with piezoelectric sensor and actuator attached as appropriate along the beam. Such generic example can be further extended for tackling light-weight structures in space applications, such as antennas, robot’s arms and solar panels. For comparative study, three generic configurations of the combined beam and piezoelectric elements are solved. The equation of motion of the beam is expressed using Hamilton’s principle, and the baseline problem is solved using Galerkin based finite element method. The robustness of the approach is assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.