Abstract

PurposeThe purpose of this study is to use the individual blade pitch control (IBC), reduce actively both the rotor hub vibratory loads and airframe vibration responses for the lift-offset compound helicopter at a high-speed flight condition.Design/methodology/approachThe Sikorsky X2 technology demonstrator (X2TD) is used as the lift-offset compound helicopter. The X2TD lift-offset rotor is modelled and its rotor hub vibratory loads at a flight speed of 250 knots are predicted using a rotorcraft comprehensive analysis code, CAMRAD II, and the airframe structural dynamics is represented with a finite element analysis code, MSC.NASTRAN. When the propulsive trim methodology is applied for rotor trim, the best input condition for IBC using multiple harmonic inputs is searched to reduce the rotor vibration, while the rotor aerodynamic performance (the rotor effective lift-to-drag ratio) is improved or maintained at least. Finally, the reduction in airframe vibration responses is investigated when the best input condition for IBC with multiple harmonics is applied to the lift-offset rotor.FindingsWhen the IBC with the single harmonic input using the 2/rev actuation frequency, amplitude of 2° and control phase angle of 120° (2P/2°/120°) is considered for X2TD rotor, the rotor vibration is reduced by about 26.37% only and the rotor effective lift-to-drag ratio increases slightly by 0.98%. When X2TD rotor uses the IBC with multiple harmonic inputs (2P/2°/45° + 5P/1°/90°), the rotor hub vibratory loads and airframe vibration responses are reduced by 44.69% and from 0.48 to 79.10%, respectively, while rotor effective lift-to-drag ratio is improved by 0.77%, as compared to the baseline without IBC.Originality/valueThis study is the first study to use the 2/rev actuation for IBC to the four-bladed lift-offset coaxial rotor and to investigate to obtain simultaneously the rotor vibration reduction, rotor performance improvement and airframe vibration reduction, using IBC with multiple harmonic inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.