Abstract

This paper deals with the active vibration control of piezoelectric sandwich plate. The structure consists of a substrate plate layer sandwiched between two layers of piezoelectric sensor and actuator. Based on laminate theory and constitutive equation of piezoelectric material, the vibration active control dynamic equation of the sandwich structure is established by using hypothetical mode method and Hamilton principle. The Rayleigh-Ritz method is used to solve it. The form of hypothetical solution is used for approximate solution, which is simple and accurate. The method of this paper is verified by several examples. The parametric studies of the sandwich plate structures are carried out. The results show that applying different boundary conditions and piezoelectric patch positions to the structures have a great influence on the natural frequency. When the driving voltage increases, the deflection of the plate structures increase approximately linearly. The active vibration control studies are investigated as well. The results show that within a certain range, the larger the value of the speed feedback coefficient, the better the active control effect. The positions of the piezoelectric patches affect the effectiveness and cost of active control. When the piezoelectric plate is located at the fixed end, the effect and cost of active control are better than that at the midpoint and free end of the plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.