Abstract

The aim of this paper is to develop an active structural control scheme to control wind turbine nacelle/tower out-of-plane vibration. An active tuned mass damper (ATMD) is designed an placed inside the turbine nacelle. An EulerLagrangian wind turbine model based on energy formulation is developed for this purpose, which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations. Also, the interaction between the blades and the tower including the ATMD is considered. The wind turbine is subjected to gravity and turbulent aerodynamic loadings. A three-dimensional (3D) model of a wind turbine foundation is designed and analysed in the finite element geotechnical code PLAXIS. The rotation of the foundation is measured and used to calculate a rotational spring constant for use in wind turbine models to describe the soil-structure interaction (SSI) between the wind turbine foundation and the underlying soil medium. Damage is induced in the soil medium by a loss in foundation stiffness. The active control scheme is shown to reduce nacelle/tower vibration when damage occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.