Abstract

Compare muscle activity and trunk stiffness during isometric trunk flexion and extension exertions. Elastic stiffness of the torso musculature is considered the primary stabilizing mechanism of the spine. Therefore, stiffness of the trunk during voluntary exertions provides insight into the stabilizing control of pushing and pulling tasks. Twelve participants maintained an upright posture against external flexion and extension loads applied to the trunk. Trunk stiffness, damping, and mass were determined from the dynamic relation between pseudorandom force disturbances and subsequent small-amplitude trunk movements recorded during the voluntary exertions. Muscle activity was recorded from rectus abdominus, external oblique, lumbar paraspinal, and internal oblique muscle groups. Normalized electromyographic activity indicated greater antagonistic muscle recruitment during flexion exertions than during extension. Trunk stiffness was significantly greater during flexion exertions than during extension exertions despite similar levels of applied force. Trunk stiffness increased with exertion effort. Theoretical and empirical analyses reveal that greater antagonistic cocontraction is required to maintain spinal stability during trunk flexion exertions than during extension exertions. Measured differences in active trunk stiffness were attributed to antagonistic activity during flexion exertions with possible contributions from spinal kinematics and muscle lines of action. When compared with trunk extension exertions, trunk flexion exertions such as pushing tasks require unique neuromuscular control that is not simply explained by differences in exertion direction. Biomechanical analyses of flexion tasks must consider the stabilizing muscle recruitment patterns when evaluating spinal compression and shear loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.