Abstract

The magnetocaloric effect (MCE) has been intensively studied for novel energy efficient thermal management systems. The present study demonstrates a proof-of-concept magnetic cooling setup for active cooling of the thermal spikes of a heated resistor. Using Gd as the MCE material, the device was capable of actively cooling thermal spikes within one cycle since the dynamics of magnetic phase transition in Gd (a second-order magnetic phase transition material) are favorable to effect a fast MCE response. Enhanced cooling rate of the heated resistor of up to ∼85% for active cooling by MCE compared to passive cooling was achieved. The cooling curve of the resistor was found to follow an exponential decrease. Our results show that magnetic cooling systems can be an efficient solution to cool thermal spikes in active transient cooling systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.