Abstract

In the study reported here, we explored high-frequency algorithmic trading and its effect on exchange-traded funds (ETFs). Using the cancel rate, the trade-to-order ratio, percentage odd-lot volume, and trade size as proxies for algorithmic trading, we found that more algorithmic trading in ETFs results in smaller and less persistent deviations of fund prices from their net asset values (NAVs). Arbitrage strategies adopted by algorithmic traders directly help reduce the magnitude and persistence of ETF price deviations from NAVs. Also, algorithmic trading improves ETF liquidity by lowering spreads and facilitates arbitrage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.