Abstract

This work presents an offshore pipeline scour monitoring sensor network system based on active thermometry. The system consists of thermal cables, data acquisition unit, and data processing unit. As the thermal cables emit heats, the distributed DS18B20 digital temperature sensors record temperature information over time. The scour-induced exposure and free spanning can be identified by analyzing the temperature curves. Pipeline exposure and free-spanning experiments were carried out in laboratory, whose results show that the system is able to give overall information about the development of pipeline scour. Difference values analysis reveals the changing patterns of heat transfer behavior for line heat source in sediment and water scenarios. Two features, magnitude and temporal instability, are extracted from temperature curves to better differentiate sediment and water scenarios. Based on these two features, K-means clustering algorithm is adopted for pattern classification of the system, which was implemented in MATLAB and facilitated the automatic detection of the scour monitoring sensor network system. The proposed sensor network has the advantages of low cost, high precision and construction flexiblility, providing a promising approach for offshore pipeline scour monitoring, especially suitable for nearshore environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.