Abstract

Electric motors and generators underpin life in today’s world. They are numerous and widespread and consume approximately 45% of the world’s energy. Any improvements in efficiency or reductions in their whole-of-life costs are actively and continually being sought. While designs accommodate the removal of heat caused by internal losses because of inefficiencies, temperature variations due to load changes and environmental temperature fluctuations, and system harmonic content still stresses electrical insulation systems. This causes the fretting of insulation, combined with moisture ingress, which leads to leakage currents and, consequently, the early failure of the electrical insulation. This paper explores the addition of thermoelectric coolers/heaters (TECs) or Peltier effect devices. We show that these solid-state devices can actively support the thermal management of a motor by keeping its internals hot, reducing moisture ingress when off, and assisting in heat removal when under load, resulting in a more thermally stable internal environment. A thermally stable environment inside the electrical machine reduces the mechanical stresses on the electrical insulation, resulting in a longer operational life and reducing the whole-of-life costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call