Abstract

We use data from campaign and continuous GPS sites in southeast and south central Alaska to constrain a regional tectonic block model for the St. Elias orogen. Active tectonic deformation in the orogen is dominated by the effects of the collision of the Yakutat block with southern Alaska. Our results indicate that ~37 mm/yr of convergence is accommodated along a relatively narrow belt of N‐NW dipping thrust faults in the eastern half of the orogen, with the present‐day deformation front running through Icy Bay and beneath the Malaspina Glacier. Near the Bering Glacier, the collisional thrust fault regime transitions into a broad, northwest dipping décollement as the Yakutat block basement begins to subduct beneath the counterclockwise rotating Elias block. The location of this transition aligns with the Gulf of Alaska shear zone, implying that the Pacific plate is fragmenting in response to the Yakutat collision. Our model indicates that the Bering Glacier region is undergoing internal deformation and could correspond to the final stage of offscraping and accretion of sediments from the Yakutat block prior to subduction. Predicted block motions at the western edge of the orogen suggest that the crust is laterally escaping along the Aleutian fore arc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.