Abstract

A major contributing cause to breast cancer related death is metastasis. Moreover, breast cancer metastasis often shows little symptoms until a large area of the organs is occupied by metastatic cancer cells. Breast cancer multimodal imaging is attractive since it integrates advantages from several modalities, enabling more accurate cancer detection. Glycoprotein CD44 is overexpressed on most breast cancer cells and is the primary cell surface receptor for hyaluronan (HA). To facilitate breast cancer diagnosis, we report an indocyanine green (ICG) and HA conjugated iron oxide nanoparticle (NP-ICG-HA), which enabled active targeting to breast cancer by HA-CD44 interaction and detected metastasis with magnetic particle imaging (MPI) and near-infrared fluorescence imaging (NIR-FI). When evaluated in a transgenic breast cancer mouse model, NP-ICG-HA enabled the detection of multiple breast tumors in MPI and NIR-FI, providing more comprehensive images and a diagnosis of breast cancer. Furthermore, NP-ICG-HAs were evaluated in a lung metastasis model. Upon NP-ICG-HA administration, MPI showed clear signals in the lungs, indicating the tumor sites. This is the first time that HA-based NPs have enabled MPI of cancer. NP-ICG-HAs are an attractive platform for noninvasive detection of primary breast cancer and lung metastasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.