Abstract

We point out unconventional mechanical properties of confined active fluids, such as bacterial suspensions, under shear. Using a minimal model of an active liquid crystal with no free parameters, we predict the existence of a window of bacteria concentration for which a suspension of E. Coli effectively behaves, at steady-state, as a negative viscosity fluid and reach a quantitative agreement with experimental measurements. Our theoretical analysis further shows that a negative apparent viscosity is due to a nonmonotonic local velocity profile, and it is associated with a nonmonotonic stress versus strain rate flow curve. This implies that fixed stress and fixed strain rate ensembles are not equivalent for active fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.