Abstract

Determination of the electrochemically active surface area (ECSA) is essential in electrocatalysis to provide surface normalized intrinsic catalytic activity. Conventionally, ECSAs of metal oxides and hydroxides are estimated using double layer capacitance (Cdl) measured at nonfaradaic potential windows. However, in the case of Ni-based hydroxide catalysts for the oxygen evolution reaction (OER), the nonfaradaic potential region before the Ni(II) oxidation peak is nonconductive, which hinders accurate electrochemical measurements. To overcome this problem, in this work, we have investigated the use of electrochemical impedance spectroscopy (EIS) at reactive OER potentials to extract the capacitance that is hypothesized to arise due to reactive OER intermediates (O*, OH*, OOH*) adsorbed on the catalyst surface. This allowed the estimation of ECSA and intrinsic activity of NiFe layered double hydroxide (NiFe LDH), the most active, state-of-the-art OER electrocatalyst in alkaline media. We analyzed the OER adsorbates capacitance (Ca) on NiFe LDH and Ni(OH)2 at different electrode potentials and identified a suitable potential range for accurate ECSA evaluation. Finally, we validated our method and the choice of potential range through rigorous catalyst loading and support studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.